Real time air quality forecasting using integrated parametric and non-parametric regression techniques

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-parametric regression for space-time forecasting under missing data

0198-9715/$ see front matter 2012 Elsevier Ltd. A http://dx.doi.org/10.1016/j.compenvurbsys.2012.08.00 ⇑ Corresponding author. Tel.: +44 781 607 6958. E-mail addresses: [email protected] (J. Ha (T. Cheng). 1 Tel.: +44 781 56

متن کامل

Online Non-Parametric Regression

We establish optimal rates for online regression for arbitrary classes of regression functions in terms of thesequential entropy introduced in [14]. The optimal rates are shown to exhibit a phase transition analogous to thei.i.d./statistical learning case, studied in [16]. In the frequently encountered situation when sequential entropyand i.i.d. empirical entropy match, our resu...

متن کامل

Parametric Real-Time System Feasibility Analysis Using Parametric Timed Automata

Real-time applications are playing an increasingly significant role in our life. The cost and risk involved in their design leads to the need for a correct and robust modelling of the system before its deployment. Many approaches have been proposed to verify the schedulability of real-time task system. A frequent limitation is that they force the task activation to restrictive patterns (e.g. pe...

متن کامل

Non - parametric VaR techniques

1 VaR (Value at Risk) estimates are currently based on two main techniques, the variance-covariance approach or simulation. Statistical and computational problems affect the reliability of these techniques. We illustrate a new technique, filtered historical simulation, that is designed to remedy some of the shortcomings of the simulation approach. We compare the estimates it produces with tradi...

متن کامل

Non-parametric Regression Between Manifolds

This paper discusses non-parametric regression between Riemannian manifolds. This learning problem arises frequently in many application areas ranging from signal processing, computer vision, over robotics to computer graphics. We present a new algorithmic scheme for the solution of this general learning problem based on regularized empirical risk minimization. The regularization functional tak...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Atmospheric Environment

سال: 2015

ISSN: 1352-2310

DOI: 10.1016/j.atmosenv.2014.12.011